

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Bioorganic & Medicinal Chemistry Letters 13 (2003) 1301-1305

Novel and Potent Human and Rat β₃-Adrenergic Receptor Agonists Containing Substituted 3-Indolylalkylamines

Hiroshi Harada,^{a,*} Yoshimi Hirokawa,^a Kenji Suzuki,^a Yoichi Hiyama,^a Mayumi Oue,^b Hitoshi Kawashima,^b Naoyuki Yoshida,^b Yasuji Furutani^b and Shiro Kato^a

^aChemistry Research Laboratories, Dainippon Pharmaceutical Co., Ltd., Enoki 33-94, Suita 564-0053, Japan ^bPharmacology & Microbiology Research Laboratories, Dainippon Pharmaceutical Co., Ltd., Enoki 33-94, Suita 564-0053, Japan

Received 5 December 2002; accepted 16 January 2003

Abstract—A novel series of 2-(3-indolyl)alkylamino-1-(3-chlorophenyl)ethanols was prepared and evaluated for in vitro ability to stimulate cAMP production in Chinese hamster ovary cells expressing cloned human β_3 -AR. The optically active **30a** was found to be the most potent and selective human β_3 -AR agonist in this series with an EC₅₀ value of 0.062 nM. In addition, **30a** selectivity for human β_3 -AR was 210-fold and 103-fold that for human β_2 -AR and β_1 -AR, respectively. Furthermore, **30a** showed potent agonistic activity at rat β_3 -AR.

© 2003 Elsevier Science Ltd. All rights reserved.

Introduction

β-Adrenergic receptors (β-ARs) have been subclassified as β₁- and β₂-ARs since 1967. A third β-AR, initially referred to as 'atypical' and later called β₃-AR³,4 has been found in a number of species, $^{5-7}$ including man in the early 1980s. The β₃-AR is located on the cell surface of both white and brown adipocytes and its stimulation promotes both lipolysis and energy expenditure.

Since the discovery of $\beta_3\text{-}AR$, a number of laboratories have been engaged in developing potent and selective $\beta_3\text{-}AR$ agonists for the treatment of obesity and noninsulin dependent (Type-II) diabetes. Early $\beta_3\text{-}AR$ agonists (the 'first generation' of potent and selective rat $\beta_3\text{-}AR$ agonists) such as, BRL 37344, CL 316243, 11 and SR 58611A, 12 having a 3-chlorophenyl moiety in the left-hand side and a carboxylic acid or an ester functionality in the right-hand side as shown in Figure 1, were reported to be effective anti-obesity and anti-diabetic agents in rodents. 13

However, human clinical trials with these drugs for the treatment of metabolic disorders have been disappointing due to a lack of selectivity and/or potency or poor pharmacokinetics.¹⁴ Because of the structural differences

Figure 1.

between human and rat β_3 -ARs, activity at the rat β_3 -AR could not effectively predict that at the human β_3 -AR. Thus, a new generation of human β_3 -AR agonists with minimal side effects associated with activation of human β_1 - and β_2 -ARs has long been needed.

At the beginning of 1990 and on the basis of results obtained from random screening for rat β_3 -AR agonists, we found that a novel 2-[2-(3-indolyl)ethylamino]-1-(3-chlorophenyl)ethanol (7) having the 3-chlorophenyl moiety structure known to be required for β_3 -AR agonistic activity, potently inhibited rat spontaneous colonic contraction (β_3 -AR; EC₅₀ = 22.9±3.1 nM) and only slightly relaxed both rat uterus (β_2 -AR; EC₅₀ = 577.3±149.4 nM) and guinea-pig trachea (β_1 -AR; EC₅₀ = > 10,000 nM). In order to improve the selectivity of lead compound 7, we focused on the introduction of various substituents into the indole nucleus and the

^{*}Corresponding author. Tel.: +81-6-6337-5904; fax: +81-6-6338-7656; e-mail: hiroshi-harada@dainippon-pharm.co.jp

side-chain at the 3-position of the indole ring, and performed optical resolution of selected compounds. Additionally, to develop potent and selective human β_3 -AR agonists, we examined adenylyl cyclase activity using Chinese hamster ovary (CHO) cell lines expressing human β_1 -, β_2 -, and β_3 -ARs.

Structure–activity relationship (SAR) studies of various 2-(3-indolyl)alkylamino-1-(3-chlorophenyl)ethanols led to the discovery of the optically active **30a**, which is a potent human and rat β_3 -AR agonist with low activity for human β_1 - and β_2 -ARs.

In this paper, we describe the synthesis and SARs of 3-indolylethanolamine derivatives while keeping the 3-chlorophenyl moiety constant as an aryl group.

Chemistry

The requisite intermediate tryptamine derivatives were prepared using procedures previously described in the literatures. ¹⁶ In general, the 3-formylindoles obtained by Vilsmeier reaction (POCl₃, DMF) of the substituted indoles were treated with nitroalkane in AcOH to produce nitroolefins in good yield. Conjugated nitroolefins were directly reduced by LiAlH₄ to give saturated primary amines although the yield was moderate to low (Scheme 1).

Most of the compounds (7–28 except 24) listed in Tables 1, 3, and 4 were prepared by coupling reaction of the racemic 3-chlorostyrene oxide 1 or its optical isomer¹⁷ (R)-1 with various tryptamine derivatives in MeOH (Scheme 2).

The optically active **8a–d** listed in Table 2 were synthesized by treatment of the optically active 3-chloromandelic acids¹⁸ (R)-**2** and (S)-**2** with the optically active α -methyltryptamines¹⁹ (R)-**3** and (S)-**3** using BOP (benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate) as a coupling reagent followed by reduction of the amide group of **4a–d** with borane (Scheme 3).

$$\bigcap_{\mathsf{R}_2} \bigcap_{\mathsf{H}} \bigcap_{\mathsf{R}} \bigcap_{\mathsf{R}_2} \bigcap_{\mathsf{H}} \bigcap_{\mathsf{R}_2} \bigcap_{$$

Scheme 1. (a) MeNO₂ or EtNO₂, AcOH; (b) LiAlH₄, THF.

Scheme 2. (a) MeOH.

Scheme 3. (a) Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP), DMF; (b) BH₃·THF.

The 2-[3-(7-*O*-substituted 3-indolyl)-2-propylamino]-1-(3-chlorophenyl)ethanols **24** and **30** as a mixture of diastereomers and the selected optical isomers **23a,b** and **30a,b** listed in Tables 4 and 5 were synthesized as shown in Scheme 4.

Scheme 4. (a) Boc₂O; (b) Pd/C, H₂, chlorobenzene; (c) ClCH₂CO₂Me, K₂CO₃, KI; (d) aqueous HCl; (e) aqueous NaOH; (f) *N,N'*-carbonyl-diimidazole; (g) separation by silica gel column chromatography; (h) ClCH₂CO₂Me or MeI.

Protection of the secondary amine functionality of the 7-benzyloxytryptamine 28 with Boc group followed by catalytic hydrogenation in the presence of chlorobenzene to avoid removal of the 3-chlorine atom in the benzene ring produced the 7-hydroxytryptamine 5. Reaction of 5 with methyl chloroacetate, followed by removal of the Boc protecting group under acidic conditions furnished the 7-methoxycarbonylmethoxytryptamine 29. Subsequent alkaline hydrolysis of 29 and acid hydrolysis of 5 gave 30 and 24, respectively.

The optically active 23a, b and 30a, b having 7-methoxyand 7-carboxylmethoxy groups, respectively (Table 5), were synthesized as follows. Protection of the aminoethanol moiety of 28 with a carbonyl group, followed by silica gel column chromatography separation of the resulting diastereomer 6 gave the optical isomers 6a, b having R- and S-configuration in the α -methyl group, respectively. A similar method to that described for the

Table 1. Human β_3 -AR agonistic activity of 2-(3-indolyl)alkylaminol-(3-chlorophenyl)ethanols $7{\text -}11^{\rm a}$

Compd	R	R_1	Ηι	Human β ₃ -AR			
			EC ₅₀ (nM) (IA%) ^b	cAMP accumulation (% at 10 ⁻⁷ M) ^c			
7 ^d	Н	Н	69 (99)				
8 e	Me	Н	12 (114)				
9e	Et	Н		20			
10 ^d	Me	Me	70 (118)				
11 ^e	c	OH H		0			

^aβ₃-AR agonistic activity was assessed by measuring cAMP accumulation in CHO cells expressing human β₃-AR (150,000 receptors/cell).

^bThe maximal amount of cAMP obtained by (–)-isoproterenol and the amount of cAMP in the absence of agonists were defined as 100 and 0%, respectively, and the relative maximal response of each compound is expressed as intrinsic activity (IA). EC₅₀ value is a concentration of the test compound to be required to achieve 50% of cAMP accumulation.

^cActivity relative to (-)-isoproterenol.

dRacemic mixture.

^eMixture of four diastereomers

Table 2. β -AR agonistic activity of compound **8** and its individual diastereomers at cloned human β_1 -, β_2 -, and β_3 -ARs and at the cloned rat β_3 -AR^a

Compd	Configuration of hydroxy center	Configuration of methyl center	EC ₅₀ (nM) (IA%) ^b			
			Human β ₃ -AR	$\begin{array}{c} Human \\ \beta_2\text{-}AR \end{array}$	$\begin{array}{c} Human \\ \beta_1\text{-}AR \end{array}$	Rat β_3 -AR
8	Mixture	Mixture	12 (114)	23 (46)	NT ^d	0.97 (107)
8a	R	R	5.4 (110)	25 (50)	1.9 (65)	0.36 (98)
8b	R	S	240 (97)	c	9.4 (50)	13 (96)
8c	S	R	220 (119)	330 (23)	47 (70)	11 (108)
8d	S	S	3300 (62)	c	140 (47)	33 (108)

^aβ-ARs agonistic activity were assessed by measuring cAMP accumulation in CHO cells expressing various β-ARs. Expression levels²¹ of β-ARs were 150,000 receptors/cell, 30,000 receptors/cell, 12,000 receptors/cell and 880,000 receptors/cell for human β_3 -, β_2 -, β_1 -, and rat β_3 -ARs.

Table 3. Human β_3 -AR agonistic activity of substituted indole derivatives 12–22^a

Compd	R	R_2	Human β_3 -AR			
			EC ₅₀ (nM) (IA%) ^b	cAMP accumulation (% at 10 ⁻⁷ M) ^c		
12 ^d	Н	1-Me		6		
13 ^d	Н	2-Me		5		
14 ^d	Н	4-Me		20		
15 ^e	Me	4-Me	96 (165)			
16 ^d	Н	5-Me	` /	7		
17 ^e	Me	6-Me	12 (95)			
18 ^d	Н	7-Me	` /	0		
19 ^e	Me	6-MeO	22 (102)			
20 ^e	Me	7-MeO	1.7 (113)			
21e	Me	6-Cl	28 (131)			
22 ^e	Me	6-Br	38 (98)			

^aSee footnote a in Table 1.

preparation of **30** from **28** was applied to the preparation of the desired optical isomers **23a,b** and **30a,b**. The absolute configuration of **6b** (*S*-configuration) and **30a** (*R*-configuration) was confirmed by X-ray crystallography, and the ORTEP diagram of **30a** is shown in Figure 2.²⁰

Results and Discussion

Activation of β -ARs by the various compounds prepared in this study was assessed by measuring cAMP accumulation in CHO cells expressing cloned human β_1 -, β_2 -, and β_3 -ARs and rat β_3 -AR. As shown in Table 1, the lead compound 7 exhibited a relatively modest agonistic activity at the human β_3 -AR (EC₅₀=69 nM).

Table 4. Human β_3 -AR agonistic activity of 7-O-substituted indole derivatives $23-30^{\rm a}$

$Compd^c$	R_3	Human β_3 -AR	
		EC ₅₀ (nM) (IA%) ^b	
23	Me	0.67 (114)	
24	Н	1.7 (128)	
25	Et	0.96 (96)	
26	Pr	14 (103)	
27	iso-Pr	2.8 (87)	
28	CH ₂ Ph	11 (Ì14)	
29	CH ₂ CO ₂ Me	0.92 (102)	
30	CH ₂ CO ₂ H	0.11 (124)	

^aSee footnote a in Table 1.

Table 5. β -AR agonistic activity of optically active 7-O-substituted indole derivatives **23a,b**, **30a,b**, and reference compounds at cloned human β_1 -, β_2 -, and β_3 -ARs and at the cloned rat β_3 -AR^a

Compd	pd Configuration R ₃ of methyl center		$EC_{50} \ (nM) \ (IA\%)^b$				
	center		Human β ₃ -AR	Human β ₂ -AR	Human β ₁ -AR	Rat β ₃ -AR	
23a	R	Me	0.36 (89)	5.2 (46)	0.13 (118)	0.15 (147)	
23b	S	Me	120 (51)	c	130 (83)	6.5 (121)	
30a (AJ-9677)	R	CH2CO2H	0.062 (116)	13 (26)	6.4 (26)	0.016 (110)	
30b	S	CH ₂ CO ₂ H	10 (84)	c	14 (107)	1.2 (106)	
BRL 37344			21 (95)	290 (31)	1700 (17)	0.095 (109)	

^aSee footnote a in Table 2.

^cSee footnote c in Table 2.

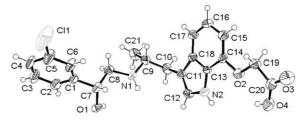


Figure 2. The ORTEP drawing of 30a with thermal ellipsoids at 50% probabilities.

Introduction of a methyl group (yielding 8) into the tryptamine side-chain of 7 resulted in good improvement in β_3 -AR agonistic activity (EC₅₀=12 nM, intrinsic activity (IA) value of 114%). However, introduction of an ethyl group (yielding 9) resulted in low activity at the human β_3 -AR. The α,α -dimethyltryptamine 10 had an activity nearly equipotent to that of the parent compound (7), and the tetrahydrocarbazole 11 showed significantly poor activity.

From the study on the β -ARs agonistic activity of the four optical isomers of BRL 37344, the (R,R)-configuration

^bSee footnote b in Table 1.

c-, could not be calculated because of low IA.

^dNT, not tested.

^bSee footnote b in Table 1.

^cSee footnote c in Table 1.

^dSee footnote d in Table 1. ^eSee footnote e in Table 1.

bSee footnote b in Table 1.

^cMixture of R,R and R,S diastereomers.

^bSee footnote b in Table 2

had proved to be important for enhancing rat β_3 -AR agonistic activity. Thus, the four optical isomers **8a**—**d** of the selected compound **8** were prepared and their agonistic activity at the human β_1 -, β_2 -, and β_3 -ARs and rat β_3 -AR was evaluated. As expected, the optical isomer **8a**, having *R*-configuration in both the hydroxy and α -methyl centers, exhibited a potent agonistic activity at the human and rat β_3 -ARs compared with other stereoisomers (**8b**—**d**). Although **8a** had an agonistic activity at human and rat β_3 -ARs 2—3 times more potent than that of the original compound **8**, it was completely non-selective. Other enantiomers (**8b**—**d**) showed low activity at all β -ARs (Table 2).

Next, we examined the agonistic activity of various substituted tryptamine derivatives. Introduction of a methyl group at 1-, 2-, 4-, 5-, and 7-positions of the indole ring of 7 and 8 resulted in low agonistic activity at the human β_3 -AR (compounds 12–16 and 18. Table 3). The 6-methyl group was well tolerated and 17 displayed comparable agonistic activity to that of its parent 8. The 6-methoxytryptamine 19 and the tryptamine derivatives 21 and 22 with chlorine and bromine at the 6-position, respectively, were weak human β_3 -AR agonists compared with 8. Fortunately, the 7-methoxyindole counterpart 20 showed much more potent agonistic activity than 8. From the above SAR studies, the 7-methoxytryptamine 20 was found to exhibit the most preferred agonistic activity at human β_3 -AR.

Because the (R)-hydroxy isomers of the hydroxy center were more potent than the corresponding (S)-hydroxy derivatives, 7-O-substituted indole analogues with an (R)-hydroxy group were prepared and tested for their agonistic activity at the human β_3 -AR. As shown in Table 4, the 7-methoxyindole derivative 23 showed an activity ca. 2.5-fold more potent than that of 20. Removal of the methyl group on the methoxy substitution gave derivative 24, which exhibited a decreased agonistic activity at the human β_3 -AR. When the methoxy group of 23 was replaced with an ethoxy and methoxycarbonylmethoxy groups, the resultants 25 and 29 exhibited approximately equal agonistic activity at human β_3 -AR. A significant loss in activity was observed with the 7-propoxy (26), 7-isopropoxy (27), and 7-benzyloxy (28) derivatives. Replacement of the methoxy group of 23 by a carboxylmethoxy group (yielding 30) led to a 6-fold improvement in human β_3 -AR agonistic activity.

Finally, the 7-methoxy and 7-carboxylmethoxyindole derivatives (23 and 30, respectively) with potent agonistic activity at human β_3 -AR were selected for diaster-eomers separation and agonistic activity examination at human β_1 -, β_2 -, and β_3 -ARs and rat β_3 -AR. As shown in Table 5, the optical isomers 23a and 30a with an (*R*)- α -methyl group were more potent than the corresponding diastereomers 23b and 30b. However, 23a exhibited poor selectivity for human β_3 -AR as it potently stimulated both human β_1 - and β_2 -ARs. On the other hand, the selectivity of 30a for human β_3 -AR was high. The optically active 30a showed a potent agonistic

activity at human and rat β_3 -ARs with selectivity for human β_3 -AR over 100-fold that for the β_1 -AR and 200-fold that for the β_2 -AR. Introduction of a carboxylmethoxy group into the indole ring of **30a** led to a much more potent agonistic activity at the human β_3 -AR and ca. 6-fold increase in activity at the rat β_3 -AR as compared to BRL 37344. The presence of the 7-carboxylmethoxy group and the *R*-configuration for the α -methyl group were therefore found to be necessary for potent agonistic activity and selectivity.

In conclusion, the synthesis and SAR studies of substituted tryptamine derivatives based on human β_3 -AR agonistic activity have been discussed. Introduction of a carboxylmethoxy group at the 7-position of the indole ring resulted in the identification of a potent human (EC₅₀=0.062 nM) and rat (EC₅₀=0.016 nM) β_3 -ARs full agonist 30a (AJ-9677). Additionally, this compound (30a) showed good selectivity for human β_3 -AR as compared to that for human β_1 - and β_2 -ARs.

References and Notes

- 1. Lands, A. M.; Arnold, A.; McAuliff, J. P.; Luduena, F. P.; Brown, T. G., Jr. *Nature* **1967**, *214*, 597.
- 2. Arch, J. R. S. Proc. Nutrition Soc. 1989, 48, 215.
- 3. Emorine, L. J.; Marullo, S.; Briend-Sutren, M.-M.; Patey, G.; Tate, K.; Delavier-Klutchko, C.; Strosberg, A. D. *Science* 1989, 245, 1118.
- 4. Tan, S.; Curtis-Prior, P. B. Int. J. Obesity 1983, 7, 409.
- 5. Granneman, J. G.; Lahners, K. N.; Chaudhry, A. *Mol. Pharmacol.* **1991**, *40*, 895.
- 6. Muzzin, P.; Revelli, J.-P.; Kuhne, F.; Gocayne, J. D.; McCombie, W. R.; Venter, J. C.; Giacobino, J.-P.; Fraser, C. M. *J. Biol. Chem.* **1991**, *266*, 24053.
- 7. Nahmias, C.; Blin, N.; Elalouf, J.-M.; Mattei, M. G.; Strosberg, A. D. *EMBO. J.* **1991**, *10*, 3721.
- 8. Lafonate, M.; Berlan, M. J. Lipid Res. 1993, 34, 1057.
- 9. (a) Weyer, C.; Gautier, J. F.; Danforth, E., Jr. *Diabetes Metab.* **1999**, *25*, 11. (b) Souza, J. C.; Burkey, B. F. *Curr. Pharm. Des.* **2001**, *7*, 1433. (c) Weber, A. E. *Annu. Rep. Med. Chem.* **1998**, *33*, 193.
- 10. Cantello, B. C. C.; Smith, S. A. Drugs Future 1991, 16, 797.
- 11. Bloom, J. D.; Claus, T. H. Drugs Future 1994, 19, 23.
- 12. Cecchi, R.; Croci, T.; Boigegrain, R.; Boveri, S.; Baroni, M.; Boccardi, G.; Guimbard, J. P.; Guzzi, U. Eur. J. Med. Chem. 1994, 29, 259.
- 13. (a) Arch, J. R. S.; Wilson, S. *Int. J. Obesity* **1996**, *20*, 191. (b) Howe, R. *Drugs Future* **1993**, *18*, 529.
- (a) Lipworth, B. J. J. Clin. Pharmacol. 1996, 42, 291. (b)
 Strosberg, A. A. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 421.
 Liggett, S. Mol. Pharm. 1992, 42, 634.
- 16. (a) 3-(2-Aminopropyl)indole, 3-(2-aminobutyl)indole: Heinzelman, R. V.; Anthony, W. C.; Lyttle, D. A.; Szmuszkovicz, Z. J. Org. Chem. 1960, 25, 1548. (b) Bergman, J.; Bäckvall, J.-E.; Lindström, J.-O. Tetrahedron 1973, 29, 971. 3-(2-Amino-2-methylpropyl)indole: Snyder, H. R.; Katz, L. J. Am. Chem. Soc. 1947, 69, 3140. 3-Amino-1,2,3,4-tetrahydrocarbazole: Mooradian, A.; Dupont, P. E.; Hlavac, A. G.; Aceto, M. D.; Pearl, J. J. Med. Chem. 1977, 20, 487.
- 17. Bloom, J. D.; Dutia, M. D.; Johnson, B. D.; Wissner, A.; Burns, M. G.; Largis, E. E.; Dolan, J. A.; Claus, T. H. *J. Med. Chem.* **1992**, *35*, 3081.
- 18. Collet, A.; Jacques, J. Bull. Soc. Chim. Fr. 1973, 3330.

19. Repk, D. B.; Ferguson, W. J. J. Heterocyclic Chem. 1976, 13, 775.

20. Mp 225–226 °C (decomp.) (aqueous NH₃/MeOH). $[\alpha]_D^{29}$ –23.3° (c 1.0, 1 mol NaOH). IR (KBr) $v_{\rm max}$; 3134, 1609, 1406, 1250, 1057, 783 cm⁻¹. ¹H NMR (dimethylsulfoxide- d_6); 0.93 (3H, d, J=6.0 Hz), 2.5–3.3 (8H, m), 4.55 (2H, s), 4.85 (1H, dd, J=9.8, 2.6 Hz), 6.42 (1H, d, J=7.8 Hz), 6.78 (1H, t,

J= 7.8 Hz), 6.94 (1H, d, J= 2.0 Hz), 6.99 (1H, d, J= 7.8 Hz), 7.27–7.33 (3H, m), 7.46 (1H, s), 11.02 (1H, s).

21. Takeda, Y.; Chou, K. B.; Takeda, J.; Sachais, B. S.; Krause, J. E. *Biochem. Biophys. Res. Comm.* 1991, 179, 1232. 22. Oriowo, M. A.; Chapman, H.; Kirkham, D. M.; Sennitt, M. V.; Ruffolo, R. R.; Cawthorne, M. A. *J. Pharmacol. Exp. Ther.* 1996, 277, 22.